Measurement of air–water CO2 transfer at four coastal sites using a chamber method
نویسندگان
چکیده
We measured the air–water CO2 flux in four coastal regions (two coral reefs, one estuary, and one coastal brackish lake) using a chamber method, which has the highest spatial resolution of the methods available for measuring coastal air–water gas flux. Some of the measurements were considerably higher than expected from reported wind-dependent relationships. The average k600 values for Shiraho Reef, Fukido Reef, Fukido River, and Lake Nakaumi were 1.5±0.6, 3.2±0.3, 0.69±0.26, and 2.2±0.9 (mean±S.D.) times larger than the wind-dependent relationships. Results were compared with current-dependent relationships and vertical turbulence intensity (VTI). VTI is an index of water-surface stirring and is calculated from near-surface vertical velocity. Although some measurements from the reefs and river closely matched those expected from wind-dependent relationships, others were considerably higher. All data were correlated with VTI and were qualitatively explained by bottom macro-roughness enhancement. In Lake Nakaumi, results tended to differ from the wind-dependent relationships, and the difference between the measured and expected gas-transfer velocity was correlated with biological DO changes and/or the intensity of density stratification. We found these factors to have important effects on coastal gas flux. In addition, the chamber method was an effective tool for evaluating coastal gas flux. © 2006 Elsevier B.V. All rights reserved.
منابع مشابه
Gas transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt, and Thames). Limnol. Oceanogr., 49(5), 2004,
We measured the flux of CO2 across the air–water interface using the floating chamber method in three European estuaries with contrasting physical characteristics (Randers Fjord, Scheldt, and Thames). We computed the gas transfer velocity of CO2 (k) from the CO2 flux and concomitant measurements of the air–water gradient of the partial pressure of CO2 (pCO2). There was a significant linear rela...
متن کاملGas transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt, and Thames)
We measured the flux of CO2 across the air–water interface using the floating chamber method in three European estuaries with contrasting physical characteristics (Randers Fjord, Scheldt, and Thames). We computed the gas transfer velocity of CO2 (k) from the CO2 flux and concomitant measurements of the air–water gradient of the partial pressure of CO2 (pCO2). There was a significant linear rela...
متن کاملNet uptake of atmospheric CO2 by coastal submerged aquatic vegetation
'Blue Carbon', which is carbon captured by marine living organisms, has recently been highlighted as a new option for climate change mitigation initiatives. In particular, coastal ecosystems have been recognized as significant carbon stocks because of their high burial rates and long-term sequestration of carbon. However, the direct contribution of Blue Carbon to the uptake of atmospheric CO2 t...
متن کاملMeasurement Of Scatter Factors For Small Photon Fields Using Gaf chromic EBT2 Film
Introduction: Small field dosimetry is challenging for radiotherapy dosimetry. measurement of the output factor in the air and water (Sc, Scp) is one of the input parameters for commissioning of treatment planning systems and beam modeling. The aims of this study are to measured Sc,Scp for small fields with EBT2 and Ion chamber and design a appropriate mini-phantom for small fi...
متن کاملVariability of the Gas Transfer Velocity of CO2 in a Macrotidal Estuary (the Scheldt)
We report a large set of 295 interfacial carbon dioxide (CO2) flux measurements obtained in the Scheldt estuary in November 2002 and April 2003, using the floating chamber method. From concomitant measurements of the air-water CO2 gradient, we computed the gas transfer velocity of CO2. The gas transfer velocity is well correlated to wind speed and a simple linear regression function gives the m...
متن کامل